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ABSTRACT
Nulling interferometry aims to detect faint objects close to bright stars. Its principle is to
produce a destructive interference along the line of sight so that the stellar flux is rejected, while
the flux of the off-axis source can be transmitted. In practice, various instrumental perturbations
can degrade the nulling performance. Any imperfection in phase, amplitude or polarization
produces a spurious flux that leaks to the interferometer output and corrupts the transmitted
off-axis flux. One of these instrumental perturbations is the crosstalk phenomenon, which
occurs because of multiple parasitic reflections inside transmitting optics, and/or diffraction
effects related to beam propagation along finite size optics. It can include a crosstalk of a
beam with itself, and a mutual crosstalk between different beams. This can create a parasitic
interference pattern, which degrades the intrinsic transmission map – or intensity response
– of the interferometer. In this context, we describe how this instrumental effect impairs the
performance of a Bracewell interferometer. A simple formalism is developed to derive the
corresponding modified intensity response of the interferometer, as a function of the two
parameters of interest: the crosstalk level (or contamination rate) and the phase shift between
the primary and secondary – parasitic – beams. We then apply our mathematical approach to
a few scientific cases, both analytically and using the GENIESIM simulation software, adapted
to handle coherent crosstalk. Our results show that a coherent crosstalk level of about 1 per
cent implies a 20 per cent drop of the signal-to-noise ratio at most. Careful attention should
thus be paid to reduce the crosstalk level inside an interferometric instrument and ensure an
instrumental stability that provides the necessary sensitivity through calibration procedures.

Key words: instrumentation: interferometers – methods: analytical – techniques: interfero-
metric.

1 IN T RO D U C T I O N

Bracewell (1978) developed the concept of nulling interferometry
that aims at detecting faint off-axis sources – e.g. planets, exozo-
diacal discs – orbiting distant stars. Its principle is to enhance the
companion over star flux ratio by producing a destructive interfer-
ence on the line of sight so that the stellar flux is rejected. By an
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appropriate choice of baseline length and orientation, the flux of
the off-axis source can be transmitted and thus detected more easily
owing to the reduced photon noise from the on-axis star.

In practice, the rejection rate of the stellar flux is not per-
fect because of the finite size of the stellar photosphere, which
causes the so-called geometric leakage. Moreover, this rejection
rate can be degraded by various instrumental effects such as im-
perfect co-phasing of the light beams, wavefront errors, inten-
sity mismatches and polarization errors (Ollivier 1999). This con-
tribution, called the instrumental leakage, adds to the geomet-
ric leakage at the destructive output of the interferometer, and
is generally considered as the main source of noise in nulling
interferometry.

The impact of the instrumental leakage on the detection of faint
companions has been considered both experimentally (Chazelas
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Figure 1. Geometric configuration of the interferometer and the astrophysical source. The two angular coordinates (θ , α) give the position in the sky plane.
Here, the line of sight is assumed to be perpendicular to the interferometer plane.

et al. 2006; Martin & Booth 2010) and analytically (Lay 2004).
However, none of these studies addressed the coherent crosstalk that
may occur between beams inside an interferometric instrument. In
fact, for most of the current classical and nulling interferometers,
the beams coming from each telescope are carried through tunnels
up to a combining device. The beams are often reduced in size
for practical reasons, and the current instruments are characterized
by optical modules performing various functions such as spatial
filtering, spectral band separation and spectral resolution. How-
ever, the transport of these beams through multiple optical modules
can be problematic. Because of diffraction effects associated with
beam propagation along finite size optics, a coherent crosstalk may
occur between beams. Occurring during the beam transport, this
crosstalk implies parasitic interferences before the recombination
step, so that the ‘intrinsic’ coherence between the beams, and con-
sequently the resulting interferometric observables, is modified.
Matter et al. (2009) studied for the first time the impact of para-
sitic interference on the measurement of the complex visibility in
classical stellar interferometry. The degradation of the modulus and
the phase of the complex visibility depends on two parameters:
the residual piston and the crosstalk level – or the contamination
rate – between the interferometric beams. This degradation may
be significant when considering the detection of close-in extrasolar
giant planets with the use of differential phase. Here, we extend
this study to nulling interferometry with a co-axial recombination
mode. We describe how this instrumental effect may affect the trans-
mission map of the interferometer, and impact the geometric and
instrumental leakages.

This paper is organized as follows: in Section 2, we develop a
simple formalism to describe this problem in the case of a Bracewell
interferometer. From that, we derive in Section 3 the modified inten-
sity response of the interferometer as a function of the two relevant
parameters for this instrumental effect, namely the crosstalk level
and the instrumental phase shift between beams (Matter et al. 2009).
In Section 4, we derive the modified null output of the interferometer
and the corresponding geometric and instrumental leakages. Then,
in Section 5, we detail the impact of crosstalk on the performance of
a nulling interferometer, and we describe the results obtained with
end-to-end numerical simulations of a classical Bracewell scheme.

Finally, in Section 6, we summarize our work and develop some per-
spectives on the implementation of this issue in future instrumental
studies.

2 T H E O R E T I C A L E L E M E N T S

2.1 Intensity response of a nulling interferometer

We summarize the basic equations of nulling interferometry in the
most simple case of a two-telescope pupil plane Bracewell inter-
ferometer. We keep the same formalism as the one used in Absil
(2006). This nulling interferometer is characterized by its intensity
response Rλ(θ ), where, θ = (θ, α) is the vector giving the coordi-
nates in the sky plane with respect to the optical axis (see Fig. 1).
This response or ‘transmission map’ is derived from the addition of
the complex amplitudes of the electric field, coming from a point-
like source located at the θ direction in the sky, collected by each
telescope and split to go either into the destructive or into the con-
structive output. At any point r of the overlapping pupil plane, in
the destructive or constructive output, the total electric field is thus
given by

E(θ , r) = �

(
r

R

) [
E1(θ )eiφ1 + E2(θ)eiφ2

]
, (1)

where E1(θ ) and E2(θ ) are the electric fields corresponding to the
telescopes 1 and 2, respectively. �( r

R
) is the transmission function

of the pupil, r =
√

x2 + y2 is the distance in the pupil plane, R is
the radius of the pupil and φk is the corresponding phase term of
the beam k. The expression of the complex electric field Ek(θ ) is
Ek(θ ) = Ekei 2π

λ xk ·θ , where xk is the position of the telescope k. We
thus have

E(θ , r) = �

(
r

R

) [
E1e

i
(

2π
λ x1·θ+φ1

)
+ E2e

i
(

2π
λ x2·θ+φ2

)]
,

= �

(
r

R

)
rλ(θ) , (2)

where rλ is defined as the amplitude response of the interferometer.
From equation (2), we can derive the intensity response of the
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Figure 2. Simple scheme describing the different possibilities of beam contamination (or crosstalk). This beam contamination can be produced by a parasitic
reflection inside transmitting optics (left) or by a beam mixing (right). ε1E1 and ε2E2 represent the main beams (in electrical field), while ε′

1E1 and ε′
2E2

correspond to the secondary beams reflected inside the optics and/or going though the wrong paths (for example due to diffraction or beam mixing).

nulling interferometer, denoted Rλ(θ ):

Rλ(θ) = rλ(θ)r∗
λ (θ ),

= |E1|2 + |E2|2

+ 2E1E2 cos

(
(φ1 − φ2) + 2π

λ
(x1 − x2) · θ

)
. (3)

Assuming that each beam is divided into two equal parts by the beam
splitter, and that they were collected by two telescopes of unitary
size, we have |E1|2 = |E2|2 = 1/2. Following the notations of Fig. 1,
we have (x1 − x2) · θ = bθ cos(α). Moreover, in the destructive
output of the beam splitter, the beams will be π-shifted, namely
φ1 − φ2 = π rad. The final expression of the intensity response is
given by

Rλ(θ, α) = 2 sin2

(
π

bθ

λ
cos(α)

)
, (4)

where no phase perturbation is taken into account. In the presence
of phase perturbation, occurring for instance because of vibrations
inside the interferometer arms or imperfect piston correction by a
fringe tracker, the intensity response becomes

Rλ(θ, α) = 2 sin2

(
π

bθ

λ
cos(α) + δφ(t)

2

)
, (5)

where δφ(t) is the variable optical path delay between the beams of
the interferometer.

2.2 Parasitic interference model

To create a model of parasitic interference, we consider the same
formalism as the one described above, in the case of a two-telescope
pupil plane Bracewell interferometer. However, because of multi-
ple parasitic reflections inside transmitting optics and/or diffraction
effects associated with beam propagation along finite size optics,
a coherent crosstalk may occur between a beam and itself, and/or
between each of the individual beams (mutual beam contamina-
tion). This crosstalk, occurring during the beam transport, implies
parasitic interferences. They will modify the ‘intrinsic’ coherence
between beams and then the intensity response of the nulling inter-
ferometer, in the destructive and constructive outputs. To model it,
we define ε1 (resp. ε2) as the main fraction of E1(θ ) (resp. E2(θ ))
propagating along the path 1 (resp. 2), and hereafter considered
as ‘the primary beam’. The two causes of crosstalk are expected
to produce the same effect, namely splitting and phase-shifting
some light from the main beam. Therefore, we define ε′

1 as the

small fraction of E1(θ ), either reflected twice inside the transmit-
ting optics and still following the path 1 or having contaminated
E2(θ ) and following the path 2 (see Fig. 2). It is hereafter consid-
ered as the ‘secondary beam’. ε′

2 corresponds to the small parasitic
fraction associated with E2(θ ). All the parasitic reflections and/or
beam contaminations occurring inside the instrument produce a
resulting modified pattern in the overlapping pupil plane of each
interferometric output. At any point r of this plane, the total electric
field is thus given by

E(θ , r) = �(r/R)
[
ε1E1(θ)eiφ1 + ε′

1E1(θ )eiφ′
1

+ ε2E2(θ )eiφ2 + ε′
2E2(θ )eiφ′

2

]
, (6)

where φk and φ′
k are the corresponding phase terms of the main part

and the secondary – or parasitic – part of the beam k, respectively.
We implicitly assume here that the crosstalk is fully coherent.

3 MODI FI ED INTENSI TY RESPONSE

3.1 General expression

From equation (6), we derive the modified intensity response of the
nulling interferometer, denoted R̃λ(θ ), in the presence of crosstalk.
Using the same notations as in Section 2.1, we thus have

E(θ , r) = �(r/R)

[
ε1E1e

i
(

2π
λ x1·θ+φ1

)
+ ε2E2e

i
(

2π
λ x2·θ+φ2

)

+ ε′
1E1e

i
(

2π
λ x1·θ+φ′

1

)
+ ε′

2E2e
i
(

2π
λ x2·θ+φ′

2

)]
,

= �(r/R)r̃λ(θ ). (7)

Then, we calculate the modified intensity response of the interfer-
ometer:

R̃λ(θ ) = r̃λ(θ )r̃∗
λ (θ ),

= ε2
1 |E1|2 + ε2

2 |E2|2

+ 2ε1ε2E1E2 cos

(
2π

λ
(x1 − x2) · θ + (φ1 − φ2)

)

+ 2ε1ε
′
1|E1|2 cos(φ1 − φ′

1) + 2ε2ε
′
2|E2|2 cos(φ2 − φ′

2)

+ 2ε1ε
′
2E1E2 cos

(
2π

λ
(x1 − x2) · θ + (φ1 − φ′

2)

)
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+ 2ε2ε
′
1E1E2 cos

(
2π

λ
(x1 − x2) · θ + (φ′

1 − φ2)

)

+ ε′2
1 |E1|2 + ε′2

2 |E2|2

+ 2ε′
1ε

′
2E1E2 cos

(
2π

λ
(x1 − x2) · θ + (φ′

1 − φ′
2)

)
(8)

As in Section 2.1, we assume that the corresponding inten-
sity collected by each of the two telescopes is normalized, and
that each corresponding beam is divided into two equal parts
by the balanced beam splitter, which implies |E1|2 = |E2|2 =
1/2. We also consider a differential effect between the beams
in the contamination process, namely: ε2 = ε1 + 
ε and ε′

2 =
ε′

1 + 
ε′. The general expression of the modified intensity response
then becomes

R̃λ(θ, α) = ε2
1

[
1 + cos

(
2π

bθ

λ
cos(α) + (φ1 − φ2)

)]

+ ε′2
1

[
1 + cos

(
2π

bθ

λ
cos(α) + (φ′

1 − φ′
2)

)]

+ ε1ε
′
1

[
cos(φ1 − φ′

1) + cos(φ2 − φ′
2)

+ cos

(
2π

bθ

λ
cos(α) + (φ1 − φ′

2)

)

+ cos

(
2π

bθ

λ
cos(α) + (φ′

1 − φ2)

)]

+ ε1
ε + 
ε2

2
+ ε′

1
ε′ + 
ε′2

2

+ (ε1
ε′ + 
ε′
1 + 
ε
ε′) cos(φ2 − φ′

2)

+ ε1
ε cos

(
2π

bθ

λ
cos(α) + (φ1 − φ2)

)

+ ε1
ε′ cos

(
2π

bθ

λ
cos(α) + (φ1 − φ′

2)

)

+ ε′
1
ε cos

(
2π

bθ

λ
cos(α) + (φ′

1 − φ2)

)
. (9)

Assuming a coherent normalization between the primary and sec-
ondary (or parasitic) beams, namely ε1 + ε′

1 = 1 and ε2 + ε′
2 = 1,

we have 
ε = −
ε′. Then, assuming that each secondary beam is
phase-shifted with respect to its primary beam, namely φk − φ′

k =

φk , we can thus rewrite equation (9) as:

R̃λ(θ, α) = R̃λ,bal(θ, α) + R̃λ,unbal(θ, α), (10)

with

R̃λ,bal(θ, α) = ε2
1

[
1 + cos

(
2π

bθ

λ
cos(α) + (φ1 − φ2)

)]

+ ε′2
1

[
1 + cos

(
2π

bθ

λ
cos(α)

+ (φ1 − φ2 + 
φ2 − 
φ1)

) ]

+ ε1ε
′
1

[
cos(
φ1) + cos(
φ2)

+ cos

(
2π

bθ

λ
cos(α) + (φ1 − φ2 − 
φ1)

)

+ cos

(
2π

bθ

λ
cos(α) + (φ1 − φ2 + 
φ2)

)]
,

(11)

and

R̃λ,unbal(θ, α) = 
ε(ε1 − ε′
1) + 
ε2 − 
ε2 cos(
φ2)

+ ε1
ε

[
cos

(
2π

bθ

λ
cos(α) + (φ1 − φ2)

)

− cos(
φ2)

− cos

(
2π

bθ

λ
cos(α) + (φ1 − φ2 + 
φ2)

)]

+ ε′
1
ε

[
− cos

(
2π

bθ

λ
cos(α)

+ (φ1 − φ2 + 
φ2 − 
φ1)

)
+ cos(
φ2)

+ cos

(
2π

bθ

λ
cos(α) + (φ1 − φ2 − 
φ1)

)]
.

(12)

It thus appears that the expression of the modified intensity response
can be separated in two terms, indicated by the subscripts ‘bal’ and
‘unbal’ that stand for balanced and unbalanced, respectively. Indeed,
R̃λ,bal(θ, α) does not depend on 
ε, the crosstalk imbalance, while
R̃λ,unbal(θ, α) does.

Following the basic principle of nulling interferometry, a relative
π-phase shift is applied between the two beams before recombina-
tion, namely φ1 − φ2 = π rad. In addition, an instrumental phase
perturbation may occur for instance because of vibrations inside
the interferometer arms or imperfect piston correction by a fringe
tracker. Therefore, a variable instrumental phase shift δφ(t) is also
affecting the beams in the interferometric arms. In the destructive
output of the beam splitter, we thus have φ1 − φ2 = π + δφ(t). The
two terms of the modified intensity response can thus be written as:

R̃λ,bal(θ, α) = ε2
1

[
1 − cos

(
2π

bθ

λ
cos(α) + δφ(t)

)]

+ ε′2
1

[
1 − cos

(
2π

bθ

λ
cos(α) + δφ(t)

+ (
φ2 − 
φ1)

) ]

+ ε1ε
′
1

[
cos(
φ1) + cos(
φ2)

− cos

(
2π

bθ

λ
cos(α) + δφ(t) − 
φ1)

)

− cos

(
2π

bθ

λ
cos(α) + δφ(t) + 
φ2)

)]
, (13)

and

R̃λ,unbal(θ, α) = 
ε(ε1 − ε′
1) + 
ε2 − 
ε2 cos(
φ2)

+ ε1
ε

[
− cos

(
2π

bθ

λ
cos(α) + δφ(t)

)
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− cos(
φ2)+cos

(
2π

bθ

λ
cos(α)+δφ(t)+
φ2

)]

+ε′
1
ε

[
cos

(
2π

bθ

λ
cos(α)+δφ(t)+
φ2−
φ1

)

+ cos(
φ2)−cos

(
2π

bθ

λ
cos(α)+δφ(t)−
φ1

)]
.

(14)

In the following, we describe the dependence of the modified in-
tensity response on the crosstalk levels or contamination rates (ε′2

1

and ε′2
2 ) and the phase shift between the primary and secondary

(or parasitic) beams (
φ1 and 
φ2). We first consider the sim-
ple case of an equal crosstalk level between both beams, namely
ε′

1 = ε′
2 = ε′. Then, we consider in addition the impact of a differ-

ential crosstalk effect (
ε �= 0) on the intensity response, through
the term R̃λ,unbal(θ, α). Finally, we briefly address the impact of a
finite bandwidth on the coherent crosstalk perturbation.

3.2 Equal crosstalk

Assuming ε′
1 = ε′

2 = ε′, the modified intensity response can be sim-
plified as:

R̃λ(θ, α) = ε2

[
1 − cos

(
2π

bθ

λ
cos(α) + δφ(t)

)]

+ εε′
[

cos(
φ1) + cos(
φ2)

− cos

(
2π

bθ

λ
cos(α) + δφ(t) − 
φ1

)

− cos

(
2π

bθ

λ
cos(α) + δφ(t) + 
φ2

)]

+ ε′2
[

1−cos

(
2π

bθ

λ
cos(α)+δφ(t)+(
φ2−
φ1)

)]
.

(15)

From this expression, we clearly see that the effect of the beam
contamination on the transmission map depends on the value of

φk. According to equation (15), we show in Fig. 3 the evolu-
tion of the transmission of an off-axis source as a function of 
φ1

and 
φ2 for a given amount of crosstalk (i.e. ε = 0.8 and ε′ =
0.2). The angular position of the off-axis source is assumed to be
(θpl, αpl), with sin2(π bθpl

λ
cos(αpl)) = 1. It clearly appears that the

transmission is maximum when no phase shift is produced dur-
ing the contamination process, independently of the crosstalk level.
In this case, namely 
φ1 = 
φ2 = 0, the transmission map in-
deed becomes R(λ, θ ) = 2(ε + ε′)2 sin2(π bθ

λ
cos(α) + δφ(t)

2 ). Here,
the primary and secondary parts of each beam remain co-phased
in the overlapping pupil plane and do not imply a modification of
the intensity response. This is represented by the factor (ε + ε′)2,
which is equal to 1. In contrast, as shown in Fig. 3, the transmission
of the off-axis source is minimized when the parasitic beams are
both π phase-shifted. In this case, the modified intensity response
becomes

R̃λ(θ, α) = 2(ε − ε′)2 sin2

(
π

bθ

λ
cos(α) + δφ(t)

2

)
. (16)

Figure 3. Evolution of the value of R̃λ(θpl, αpl), at 10 μm, as a function of
the phase shifts 
φ1 and 
φ2, between the primary and secondary beams.
The angular position of the off-axis source is assumed to be (θpl, αpl), with

sin2(π
bθpl
λ

cos(αpl)) = 1. We here consider ε = 0.8 and ε′ = 0.2, and no
instrumental phase shift.

Figure 4. Plot of the 1D transmission map (or intensity response) of a
Bracewell nulling interferometer having a baseline length of 20 m and
observing at 10 μm. We consider the non-modified case (without crosstalk),
i.e. Rλ(θ , α) (solid line), and the modified case (with crosstalk), i.e. R̃λ(θ, α)
(dashed line). In addition, we assume ε = 0.8 and ε′ = 0.2, 
φ1 = 
φ2 = π,
and an instrumental phase shift of 1 rad.

In this case, we can clearly notice a decrease of the level of the
transmission map in the destructive output of the interferometer, for
every angular position, by a factor (ε − ε′)2.

This is illustrated in Fig. 4, where we show the transmission map
of a Bracewell interferometer with and without crosstalk (see dashed
and solid curves, respectively). As a consequence of this overall
decrease, the transmission close to the centre of the field of view is
lower than in the nominal case without coherent crosstalk. The flux
coming from the on-axis stellar source is thus better rejected, which
implies less stellar leakage, while the flux of the off-axis source
is less transmitted. This result is not surprising if we refer to the
description of Matter et al. (2009). In the case of crosstalk occurring
in a classical interferometer, parasitic interference creates two other
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fringe patterns in addition to the intrinsic fringe pattern due to the
astrophysical source. One of them can be assimilated to a Young-like
fringe pattern, which is created by two sources, possibly coherent,
represented by the main part of the beam (denoted ε) and the small
contribution having contaminated the other path (denoted ε′). This
pattern artificially increases the proportion of coherent flux in the
resulting interference pattern, since a part of the incoherent flux
of the source was actually used to form these Young-like fringes.
In our case, the apparent better rejection of the on-axis source
flux is thus accompanied by a lower transmission of the flux of
the off-axis source (see Fig. 4). The signal coded in the modified
interferogram and forming the transmission map does not only refer
to the frequency information of the astrophysical source at b/λ, but
also to a contribution of the lower spatial frequencies originating
from the transfer function of the individual apertures.

3.3 Differential crosstalk

Assuming differential effects for the beam contamination process,
namely 
ε �= 0, we consider here the modified intensity response
composed of the two terms R̃λ,bal and R̃λ,unbal (see equations 13
and 14). The effect of differential crosstalk is represented in Fig. 5,
showing the off-axis source transmission with respect to 
ε and

φ1, assuming 
φ2 = π (left), and with respect to 
ε and 
φ2,
assuming 
φ1 = π (right). In the framework of our parasitic in-
terference model, a positive differential crosstalk will improve the
off-axis transmission compared to the ‘equal crosstalk’ case (
ε =
0). By comparing the left-hand and right-hand panels of Fig. 5, it
also appears that a differential crosstalk causes an asymmetry in
the effect of 
φ1 and 
φ2 on the off-axis transmission. Choosing

φ1 = π rather than 
φ2 = π implies a lower maximum for the
off-axis transmission value. However, the minimum value of the
off-axis transmission remains the same in both cases and is still
associated with 
φ1 = 
φ2 = π.

In this case, the modified intensity response simplifies as

R̃λ(θ, α) = 2(ε1 − ε′
1 + 
ε)2 sin2

(
π

bθ

λ
cos(α) + δφ(t)

2

)
. (17)

In contrast, if no phase shift occurs during the contamination pro-
cess, equal and differential crosstalk effects cancel out and we re-
trieve the intrinsic expression of the intensity response, only affected
by the instrumental phase shift δφ(t): R̃λ(θ, α) = (ε1 + ε′

1)2[1 −
cos(2π bθ

λ
cos(α) + δφ(t))] = 2 sin2(π bθ

λ
cos(α) + δφ(t)

2 ).
Therefore, we clearly see that the differential crosstalk will im-

pact the level of the transmission map, depending on the value and
the sign of 
ε.

In the next section, we derive the crosstalk-affected null out-
put and assess the impact on the associated signal-to-noise ratio
(SNR). In order to highlight the general effect of crosstalk on those
quantities, we will assume an equal crosstalk between the beams
(
ε = 0).

3.4 Finite bandwidth

The previous discussion assumes that light is purely monochromatic
so that the coherence time is infinitely long. In practice, interfero-
metric observations are generally obtained with a finite bandwidth
so that the coherence is only ensured within a given coherence
length, called L in the following. When the optical path differences
associated with 
φk are longer than L, the parasitic beams will not
interfere anymore with the main beams. In addition, if the opti-
cal path difference between the parasitic beams is also longer than
the coherence length, the crosstalk is then equivalent to a classical
intensity mismatch effect described in detail elsewhere (e.g. Lay
2004). However, interference might still occur between the para-
sitic beams if they remain co-phased as it is likely to be the case
for an interferometer designed in a symmetric way. This effect is in
second order in ε′, and the modification of the intensity response
can still be described by equation (13) or equation (14).

4 M O D I F I E D N U L L O U T P U T

The intensity response projected on the plane of the sky forms the
transmission map of the interferometer. We here assume that the
final detection is performed in an image plane. Therefore, a single-
dish telescope image is formed, except that the contribution of each
source is affected by the intensity response of the interferometer,

Figure 5. Left: modified transmission of an off-axis source, R̃λ(θoff , αoff ), at 10 μm, as a function of the differential crosstalk 
ε and the phase shift 
φ1,

assuming 
φ2 = π. This off-axis source is assumed to be on a maximum of the ideal transmission map, namely sin2(π
bθpl
λ

cos(αpl)) = 1. In addition, we
consider ε = 0.8, ε′ = 0.2, 
ε = 0.1 and no instrumental phase shift. Right: same as left but plotted as a function of 
ε and 
φ2, and assuming 
φ1 = π.
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depending on their location in the image plane. No fringe is formed
nor recorded, and the final output generally consists of the total
intensity in the diffraction-limited field of view, namely the size of
the Airy pattern. Following the mathematical description of Absil
(2006), this final output or ‘null’ then writes:

N (λ) = T (λ)
∫ ∫

[Bsky(λ, θ, α)R̃λ(θ, α)

+ Bbckg(λ, θ, α, t)]P (θ, α)θdθdα, (18)

with T(λ) the wavelength-dependent total transmission of the in-
terferometer, Bsky(λ, θ , α) the brightness distribution of the source
in the diffraction-limited field of view, Bbckg(λ, θ , α, t) the time-
dependent brightness of the incoherent background emission (sky
thermal emission, telescope, optical train), P(θ , α) the point spread
function of a single telescope, and finally, R̃λ(θ, α) the transmission
map of the interferometer affected by parasitic interference. Here,
we consider a magnification factor of 1, so that we keep the same
angular coordinates in the focal plane, namely (θ , α).

Let us consider the observation of an extended source, composed
of a star partially resolved by the interferometer and a secondary
component (planet, exozodiacal disc,...). The corresponding bright-
ness distribution on the sky is

Bsky(λ, θ, α) = B∗(λ)�

(
θ

θ∗

)
+ Boff (λ)f (θ, α). (19)

�( θ
θ∗ ) is the top-hat function, which is equal to 1 in the angular

domain [0, θ∗], where θ∗ is the angular diameter of the stellar
photosphere, and equal to 0 outside. The stellar brightness per square
metre per steradian per spectral bandwidth B∗(λ) is considered to
be constant over the stellar surface (uniform disc approximation).
Boff(λ) is the brightness of the off-axis source, while f (θ , α) is its
distribution on the sky.

To illustrate how the null output will be perturbed by the crosstalk
effect, we hereafter consider the case of 
φ1 = 
φ2 = π, so that
R̃λ(θ, α) = 2(ε − ε′)2 sin2(π bθ

λ
cos(α) + δφ

2 ). Then, assuming that
the stellar angular diameter is small compared to the fringe spacing
(θ∗ � λ

b
), and that δφ(t) � 1, we can simplify the expression of the

modified transmission map in the angular domain [0, θ∗], hereafter
denoted R̃θ∗ (λ, θ, α) as:

R̃θ∗ (λ, θ, α) ≈ 2(ε − ε′)2

(
π

bθ

λ
cos(α) + δφ(t)

2

)2

. (20)

Provided that the finite stellar photosphere of angular radius θ∗
is almost unresolved by one single telescope (and assuming that
it is also the case for the off-axis source), we can assume P (θ ) =
2J1(πθD/λ)

πθD/λ) ≈ 1 for both sources. The final output can then be written
as:

N (λ) ≈ T (λ)B∗(λ)
∫ 2π

0

∫ θ∗

0
R̃θ∗ (λ, θ, α)θdθdα

+ T (λ)Boff (λ)
∫ ∫

R̃λ(θ, α)f (θ, α)θdθdα

+ T (λ)
∫ ∫

Bbckg(λ, θ, α, t)θdθdα.

N (λ) ≈ N∗(λ) + Boff (λ)
∫ ∫

R̃λ(θ, α)f (θ, α)θdθdα

+
∫ ∫

Bbckg(λ, θ, α, t)θdθdα. (21)

This modified null output contains, in addition to the off-axis source
and background signals, the stellar leakage contribution denoted
N∗(λ). We clearly see that every source contributing to the null out-
put, except the background emission, is affected by the parasitic
interference (or crosstalk) effect through the modified intensity re-
sponse R̃(λ, θ, α). In this case, the expression of the stellar leakage
is

N∗(λ) ≈ T (λ)B∗(λ)(ε − ε′)2

[
π3b2θ4

∗
2λ2

+ δφ2(t)

2
πθ2

∗

]
, (22)

where the first term represents the classical geometric stellar leak-
age. The second term can be associated with the instrumental leak-
age, which is related to the instrumental variable phase shift δφ(t).
Both terms are multiplied by the parasitic factor (ε − ε′)2, which
modifies the leakage level.

In this section, we showed that the effect of the crosstalk phe-
nomenon is to modify the null output including the off-axis flux
coming from the astrophysical source. Two important consequences
follow from that. First, the detection of the off-axis signal is likely to
be impaired because of the decrease of the off-axis transmission of
the interferometer. Secondly, even though the off-axis source is de-
tectable in terms of SNR, its genuine signal is anyway modified and
the corresponding estimation will be corrupted here by the factor
(ε − ε′)2.

5 N OI SE ANALYSI S

In this section, we derive the impact of crosstalk on the detection
performances of a nulling interferometer, using our theoretical for-
malism and then numerical simulations.

5.1 Theoretical determination

To estimate the detection efficiency of a nulling interferometer af-
fected by crosstalk, we thus define an SNR taking into account the
different noise contributions related to the stellar leakage and the
background emission. We assume that the stellar leakage is per-
fectly calibrated by a rotation of the interferometer, to remove the
geometric leakage, and by a calibrator observation, to evaluate the
contribution of instrumental leakage. This procedure assumes an
instrument stable enough between the calibrator and source obser-
vations, implying in particular a constant crosstalk level. Therefore,
the modified null output (see equation 21) is mostly affected by
the photon noise associated with the modified stellar leakage (see
equation 22), and the photon noise of the background emission.

Our SNR estimator is the ratio between the useful ‘signal’, i.e.
the flux of the off-axis source that should be measured at the de-
structive output during an integration time 
t, and the photon noise
associated with the stellar leakage and the background emission,
measured during the same integration time 
t:

Signal = Foff (λ)
t

∫ ∫
R̃λ(θ, α)f (θ, α)θdθdα,

Noise =
√

σ 2
B∗ (λ) + σ 2

Bbckg
(λ),

where σ 2
B∗ (λ) = F∗(λ)
t(ε − ε′)2( π3b2θ4∗

2λ2 + <δφ2>

2 πθ2
∗ ) is the vari-

ance of the photon noise associated with the stellar leakage, σ 2
Bbckg

(λ)
is the variance of the photon noise associated with the back-
ground emission measured during the integration time 
t. Foff(λ) =
Boff(λ)StelT(λ)
λ and F∗(λ) = B∗(λ)StelT(λ)
λ are the total pow-
ers of the off-axis source and the star, respectively, collected by an
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interferometer having telescopes of surface Stel, an overall instru-
mental transmission T(λ), within a spectral bandwidth 
λ. 〈δφ 〉 2

is the quadratic temporal mean of the instrumental phase-shift error
during the same integration time 
t. Assuming that a fringe tracker
is used, we can reasonably consider that the mean of δφ(t) is negli-
gible against its standard deviation. Therefore, we get 〈δφ〉2 ≈ σ 2

δφ ,
with σ δφ the standard deviation of the instrumental phase-shift er-
ror δφ(t), during the integration time 
t. Then, our estimator writes
as:

SNR=
Foff (λ)
t

∫ ∫
R̃λ(θ, α)f (θ, α)θdθdα√√√√F∗(λ)
t(ε − ε′)2

(
π3b2θ4

∗
2λ2

+ σ 2
δφ

2
πθ2

∗

)
+ σ 2

Bbckg
(λ)

.

(23)

Using equations (5) and (16), we can write: R̃λ(θ, α) = 2(ε −
ε′)2Rλ(θ, α). Then, equation (23) becomes:

(i) In the stellar leakage-limited regime:

SNR ≈ (ε − ε′)
Foff (λ)
t

∫ ∫
Rλ(θ, α)f (θ, α)θdθdα√√√√F∗(λ)
t

(
π3b2θ4

∗
2λ2

+ σ 2
δφ

2
πθ2

∗

) ; (24)

in this case, the modified SNR directly depends on the factor ε −
ε′.

(ii) In the background-limited regime:

SNR ≈ (ε − ε′)2
Foff (λ)
t

∫ ∫
Rλ(θ, α)f (θ, α)θdθdα

σBbckg (λ)
; (25)

in this case, the modified SNR directly depends on the factor
(ε − ε′)2.

Considering the coherent normalization of the beams, namely
ε + ε′ = 1, Fig. 6 shows the evolution of the SNR of an off-axis
source as a function of the crosstalk level ε′2, in the two extreme
regimes shown above. The SNR is simply normalized by the in-
trinsic SNR value, i.e. without any flux contamination (ε′2 = 0 per
cent), in order to illustrate the decrease against ε − ε′ = 1 − 2

√
ε′2

and (ε − ε′)2 = (1 − 2
√

ε′2)2. For a crosstalk level of 1 per cent,

Figure 6. Evolution of the modified SNR of an off-axis source, as a function
of the crosstalk level ε′2, in stellar leakage-limited and background-limited
regimes. This SNR is normalized to the SNR value without any flux con-
tamination.

the SNR is significantly reduced by 20 and 36 per cent in the stel-
lar leakage-limited and background-limited regimes, respectively.
This larger SNR decrease in the background-limited case illus-
trates the fact that the background emission is not affected by the
intensity response of the interferometer (see equation 18). As a
consequence, the background emission level is not modified in
the presence of crosstalk while the off-axis transmission is. In a
background-dominated regime, the SNR is thus more sensitive to
the level of crosstalk.

5.2 Numerical simulation

In order to apply our theoretical approach to a more realistic con-
text, we used the GENIESIM simulation software (Absil et al. 2006),
which was designed to simulate various Bracewell interferometer
concepts such as the Ground Based European Nulling Interferom-
etry Experiment (GENIE) instrument at the Very Large Telescope
Interferometer (VLTI). GENIESIM has the advantage to have been ex-
tensively validated by cross-checking with performance estimates
done by industrial partners during the GENIE phase A study. It
performs end-to-end simulations of nulling interferometers, includ-
ing the simulation of astronomical sources (star, circumstellar disc,
planets, background emission), atmospheric turbulence (piston, lon-
gitudinal dispersion, wavefront errors, scintillation), as well as a
realistic implementation of closed-loop compensation of phase and
intensity perturbations by means of fringe tracking and wavefront
correction systems. The output of the simulator basically consists
of time series of photo-electrons recorded by the detector in the
constructive and destructive outputs of the nulling combiner. The
individual signal and noise contributions of the final output are ex-
tensively described in Absil et al. (2006) and Defrère et al. (2008).

In the context of this study, we have extended the use of GENIESIM

to handle crosstalk by following the mathematical description pre-
sented above. This was actually quite straightforward since only the
theoretical expression of the complex amplitude of the transmis-
sion map (equation 2) had to be updated following equation (6). All
output signal and noise contributions are then automatically taking
crosstalk into account. Using GENIESIM, we simulated a Bracewell
interferometer with 1-m apertures separated by a 20-m baseline, and
observing at 10 μm. We estimated, for different values of crosstalk,
the broad-band SNR that would be obtained by such an instrument
when observing a hot Jupiter-like exoplanet orbiting, at 0.5 au, an
M5 star 5 pc away. For the sake of comparison with our theoretical
results, we considered a normalized SNR and a significant crosstalk
level values up to 5 per cent. Fig. 7 shows the normalized broad-
band SNR obtained by GENIESIM with respect to the crosstalk level
(ε′2), in the case of three noise regimes, geometric leakage-limited,
instrumental leakage-limited and background-limited. In all three
cases, the decrease of the normalized SNR provided by GENIESIM fol-
lows in very good agreement our theoretical predictions (see Fig. 6).
For instance, a crosstalk level of 1 per cent leads to a relative SNR
decrease of approximately 20 per cent in the stellar leakage-limited
regime (geometric or instrumental leakage-limited), and approxi-
mately 36 per cent in the background-limited regime. This shows
that our theoretical description can predict the impact of crosstalk
even in more realistic conditions of phase perturbations, provided
by GENIESIM, than those considered in our equations.

5.3 Laboratory measurements

A legitimate question is whether the level of crosstalk used in
this study corresponds to realistic values expected for nulling
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Figure 7. Normalized SNR of a space-based Bracewell interferometer sim-
ulated with GENIESIM, in the stellar leakage-limited (geometric or instrumental
leakage) and background-limited regimes. The SNR evolution is given with
respect to the crosstalk level (ε′2). The SNR value is normalized by its value
without crosstalk.

interferometers. In the framework of nulling interferometry
testbeds, such as Pegase Experiment for Research and Stabiliza-
tion of Extreme Extinction (PERSEE) (see e.g. Jacquinod et al.
2008), parasitic flux was actually used to feed metrology sensors.
However, very low incoherent crosstalk levels of about 10−7 per
cent were estimated from a ZEMAX model (Jacquinot 2010). The
coherent crosstalk levels considered in our simulations (up to 5 per
cent) thus overestimate what is currently measured in that case.
The phenomenon of parasitic interference is hence not an issue for
such an experiment. However, it might be more problematic for
long-term flagship missions dedicated to the detection of Earth-like
planets for which a deeper null will be required. Therefore, a care-
ful attention will anyway have to be paid to the possible sources of
crosstalk, and especially coherent crosstalk, in the design of future
nulling interferometry experiments.

6 C O N C L U S I O N

This work describes the phenomenon of parasitic interference in
nulling interferometry as a consequence of coherent crosstalks. It
can result from parasitic reflections inside the transmitting optics
and/or from mutual beam contamination. Through an analytical
approach, we have shown that this undesired effect affects the
overall level of the transmission map of a nulling interferome-
ter. In addition, it can possibly affect the observing and calibra-
tion procedures, which may not be yet fully defined for the future
projects but would have to be considered. The two parameters in-
volved in this degradation are the contamination rate – or crosstalk
level – and the phase shift between each primary beam and its
parasitic component.

An equal crosstalk between the beams results in a flattening of
the transmission map at the destructive output, by a factor (ε −
ε′)2, in the extreme case of a π phase shift between the primary
and secondary – or parasitic – beams. Here, ε2 represents the flux
fraction of each primary beam, whereas ε′ corresponds to the flux
fraction of their corresponding parasitic beam, i.e. the crosstalk
level or contamination rate. Considering in addition, a differential
crosstalk 
ε between the beams, the transmission map level is
modified as (ε1 − ε′

1 + 
ε)2, where ε2
1 and ε′2

1 corresponds to the
beam 1 in the ‘equal crosstalk’ case. Because of this modification of
the transmission map, the flux coming from the finite-size on-axis
stellar source may be better rejected, while the flux of the off-axis

source may be less transmitted. Therefore, in an equal crosstalk
case, the photon noise due to stellar leakage is reduced by a factor
(ε − ε′) while the off-axis astrophysical flux is reduced by a factor
(ε − ε′)2. Since it is independent of the interferometer intensity
response, the background emission level is not modified. This im-
plies a degradation of the final null output SNR, by a factor (ε −
ε′), in a stellar leakage-limited regime, and a greater degradation
by a factor (ε − ε′)2, in a background-limited regime. To some
extent, the estimation of the true astrophysical signal of the off-axis
source, namely its spectrum, is therefore corrupted by the crosstalk
effect, even though it is detectable. In addition, another important
aspect is related to the retrieval of the astrophysical signal in actual
observations requiring calibration procedures. For instance, since
crosstalk impairs stellar leakage, the transfer function of a nulling
interferometer will be biased if the calibration stars do not have the
same angular diameter than the science star. Hence, to minimize the
corruption of the true astrophysical signal, a careful attention should
be paid to: (1) the design of the interferometer; in the context of the
future VLTI instrument MATISSE (Lopez et al. 2006), Matter et al.
(2009) proposed different solutions to prevent crosstalk and thus
parasitic interference between beams, especially the separation of
the path of each beam by a careful baffling inside the instrument;
(2) the calibration procedures, involving the quality of calibration
stars and the instrument stability especially in terms of crosstalk
level.

We then compared our analytical study with numerical simula-
tions of the impact of parasitic interference on the null output and the
SNR delivered by a Bracewell interferometer. For that, we adapted
the GENIESIM simulation software to handle crosstalk. Our results
show that the relative decrease of the SNR provided by GENIESIM

is in very good agreement with our mathematical description. A
crosstalk of about 1 per cent implies a 20 per cent drop of the SNR
in the geometric and instrumental leakage limited-regimes, while
it implies a larger decrease of about 36 per cent of the SNR in the
background-limited regime.

As previously mentioned, the parasitic interference phenomenon
would appear to be negligible in current nulling interferometry
testbeds such as PERSEE, where very low incoherent crosstalk
levels of the order of 10−7 have been measured.

As a final conclusion, it appears that, up to now, little attention
has been paid to the phenomenon of parasitic interference. This
issue has been here formalized in the case of a Bracewell scheme.
Notably, we could see that the detection of astrophysical objects
providing weak signatures and flux level in the null output, such
as hot Jupiter-like extrasolar planets, requires careful attention to
various fine instrumental effects such as parasitic interference. Our
work contributes to a better understanding of the factors optimizing
the design of future planet-detecting interferometers like the NASA
space nulling interferometer mission concept, Fourier Kelvin Stellar
Interferometer (Danchi et al. 2003).
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